Arginine

H ₂ N	NH2 OH			
L-Arginine (3 gm in 5 gm)				
	Names			
Other names 2-Amino-5-guanidinopentanoic	acid Identifiers			
CAS Number	7200-25-1 X 157-06-2 R X 74-79-3 S X			
3D model (JSmol)	Interactive image			
3DMet	B01331			
Beilstein Reference	1725411, 1725412 <i>R</i> , 1725413 <i>S</i>			
ChEBI	CHEBI:29016			
ChEMBL	ChEMBL212301 X ChEMBL1485 X			
ChemSpider	227 🖌			

]
	64224 R 🗶	
	6082 <i>s</i> 🗶	_
DrugBank	DB00125 🗶	-
ECHA InfoCard	100.000.738	-
EC Number	230-571-3	
Gmelin Reference	364938 R	
IUPHAR/BPS	721	
KEGG	C02385 🗶	
MeSH	Arginine	TM
PubChem CID	232 71070 R	gin
	6322 <i>s</i> gm in 5 gm)	SACHETS
RTECS number	CF1934200 s	-
UNII	94ZLA3W45F 🖌	-
InChI[show]		
SMILES[show]		-
	Properties	
Chemical formula	Properties C ₆ H ₁₄ N ₄ O ₂	
	$C_6H_{14}N_4O_2$	
Molar mass	$C_6H_{14}N_4O_2$ 174.20 g·mol ⁻¹	-
Molar mass Appearance	$C_6H_{14}N_4O_2$ $174.20 \text{ g}\cdot\text{mol}^{-1}$ White crystals	
Molar mass Appearance Odor	$C_6H_{14}N_4O_2$ 174.20 g·mol ⁻¹ White crystals Odourless	
Molar mass Appearance Odor Melting point	C ₆ H ₁₄ N ₄ O ₂ 174.20 g·mol ⁻¹ White crystals Odourless 260 °C; 500 °F; 533 K	
Molar mass Appearance Odor	C ₆ H ₁₄ N ₆ O ₂ 174.20 g·mol ⁻¹ White crystals Odourless 260 °C; 500 °F; 533 K 368 °C (694 °F; 641 K)	
Molar mass Appearance Odor Melting point Boiling point Solubility in water	C ₆ H ₁₄ N ₆ O ₂ 174.20 g·mol ⁻¹ White crystals Odourless 260 °C; 500 °F; 533 K 368 °C (694 °F; 641 K) 14.87 g/100 mL (20 °C)	
Molar mass Appearance Odor Melting point Boiling point	C ₆ H ₁₄ N ₆ O ₂ 174.20 g·mol ⁻¹ White crystals Odourless 260 °C; 500 °F; 533 K 368 °C (694 °F; 641 K)	
Molar mass Appearance Odor Melting point Boiling point Solubility in water	C ₆ H ₁₄ N ₆ O ₂ 174.20 g·mol ⁻¹ White crystals Odourless 260 °C; 500 °F; 533 K 368 °C (694 °F; 641 K) 14.87 g/100 mL (20 °C) slightly soluble in ethanol	

Basicity (pK_b)	1.509		
Thermochemistry			
Specific heat capacity (<i>C</i>)	232.8 J K ⁻¹ mol ⁻¹ (at 23.7 °C)		
Std molar entropy (S ⁹ 298)	250.6 J K ⁻¹ mol ⁻¹		
Std enthalpy of formation $(\Delta_i H^{e_{298}})$	-624.9622.3 kJ mol ⁻¹		
Std enthalpy of combustion($\Delta_c H^*_{298}$)	-3.73963.7370 MJ mol ⁻¹		
	Pharmacology	TM	
ATC code	B05XB01 (WHO) s	pin	
L-Arginine (3 gm in 5 gm)			
Safety data sheet	See: data page	UNUTETO	
GHS pictograms	sigma-aldrich		
GHS signal word	WARNING		
GHS hazard statements	H319		
GHS precautionary statements	P305+351+338		
Lethal dose or concentration (LD, L	<i>C</i>):		
<i>LD</i> ₅₀ (median dose)	5110 mg/kg (rat, oral)		
Related compounds			
Related alkanoic acids	<i>N</i> -Methyl-D-aspartic acid		
	beta-Methylamino-L-alanine		
	Guanidinopropionic acid		
	Theanine		
	Pantothenic acid		
Related compounds	Panthenol		
Supple	ementary data page		
Structure and	Refractive index (<i>n</i>),		

properties	Dielectric constant (ɛ,), etc.		
Thermodynamic data	Phase behaviour solid–liquid–gas		
Spectral data	UV, IR, NMR, MS		
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).			
🗶 ve	Verify (what is VX?)		
Infobox references			

Arginine (symbol **Arg** or **R**⁽¹⁾) is an α -amino acid that is used in the biosynthesis of proteins. It is encoded by the codons **CGU**, **CGC**, **CGA**, **CGG**, **AGA**, and **AGG**.^[2] It contains an α -amino group, an α -carboxylic acid group, and a side chain consisting of a 3-carbon aliphatic straight chain ending in a guanidino group. At physiological pH, the carboxylic acid is deprotonated ($-COO^-$), the amino group is protonated ($-NH_3^+$), and the guanidino group is also protonated to give the guanidinium form (-C-(NH₂)₂⁺), making arginine a charged, aliphatic amino acid.^[3] It is the precursor for the biosynthesis of nitric oxide.

In humans, arginine is classified as a semiessential or conditionally essential amino acid, depending on the developmental stage and health status of the individual.^[4] Preterm infants are unable to synthesize or create arginine internally, making the amino acid nutritionally essential for them.^[5] Most healthy people do not need to supplement with arginine because it is a component of all proteincontaining foods^[6] and can be synthesized in the body from glutamine via citrulline.^[7]

History

Arginine was first isolated from <u>lupin</u> and pumpkin seedlings by the German chemist <u>Ernst Schulze</u> and his assistant[®] Ernst Steiger. They confirmed and published the structure in 1886.[®]

Sources

Dietary sources

Arginine is a conditionally essential amino acid in humans and rodents,¹¹⁰ as it may be required depending on the health status or lifecycle of the individual. For example, while healthy adults can supply their own requirement for arginine, immature and rapidly growing individuals require arginine in their diet,¹¹¹ and it is also essential under physiological stress, for example during recovery from burns, injury, and sepsis,¹¹¹ or when the <u>small</u> intestine and <u>kidneys</u>, which are the major sites of arginine biosynthesis, have been damaged.¹¹⁰ It is, however, an essential amino acid for birds, as they do not have a <u>urea cycle</u>.¹¹² For some carnivores, for example cats, dogs¹¹³ and ferrets, arginine is essential,¹¹⁰ because after a meal, their highly efficient <u>protein catabolism</u> produces large quantities of <u>ammonia</u> which need to be processed through the urea cycle, and if not enough arginine is present, the resulting ammonia toxicity can be lethal.¹¹⁴ This is not a problem in practice, because meat contains sufficient arginine to avoid this situation.¹¹⁴

Animal sources of arginine include meat, dairy products, and eggs,^{[15][16]} and plant sources include seeds of all types, for example grains, beans, and nuts.^[16]

Biosynthesis

Arginine is synthesized from <u>citrulline</u> in <u>arginine and proline metabolism</u> by the sequential action of the cytosolic enzymes <u>argininosuccinate synthetase</u> and <u>argininosuccinate lyase</u>. This is an energetically costly process, because

for each molecule of <u>argininosuccinate</u> that is synthesized, one molecule of <u>adenosine triphosphate</u> (ATP) is hydrolyzed to <u>adenosine monophosphate</u> (AMP), consuming two ATP equivalents.

Citrulline can be derived from multiple sources:

- from arginine itself via <u>nitric oxide synthase</u>, as a byproduct of the production of nitric oxide for <u>signaling</u> purposes
- from <u>ornithine</u> through the breakdown of <u>proline</u> or <u>glutamine/glutamate</u>
- from asymmetric dimethylarginine via DDAH

The pathways linking arginine, <u>glutamine</u>, and <u>proline</u> are bidirectional. Thus, the net use or production of these amino acids is highly dependent on cell type and developmental stage.

On a whole-body basis, synthesis of arginine occurs principally via the intestinal-renal axis: the <u>epithelial cells</u> of the <u>small intestine</u> produce citrulline, primarily from <u>glutamine</u> and <u>glutamate</u>, which is carried in the bloodstream to the <u>proximal tubule cells</u> of the <u>kidney</u>, which extract citrulline from the circulation and convert it to arginine, which is returned to the circulation. This means that impaired small bowel or renal function can reduce arginine synthesis, increasing the dietary requirement.

Synthesis of arginine from citrulline also occurs at a low level in many other cells, and cellular capacity for arginine synthesis can be markedly increased under circumstances that increase the production of <u>inducible NOS</u>. This allows citrulline, a byproduct of the NOS-catalyzed production of nitric oxide, to be recycled to arginine in a pathway known as the citrulline-NO or arginine-citrulline pathway. This is demonstrated by the fact that, in many cell types, NO synthesis can be supported to some extent by citrulline, and not just by arginine. This recycling is not quantitative, however, because citrulline accumulates in NO-producing cells along with <u>nitrate</u> and <u>nitrite</u>, the stable end-products of NO breakdown.^[117]

Function

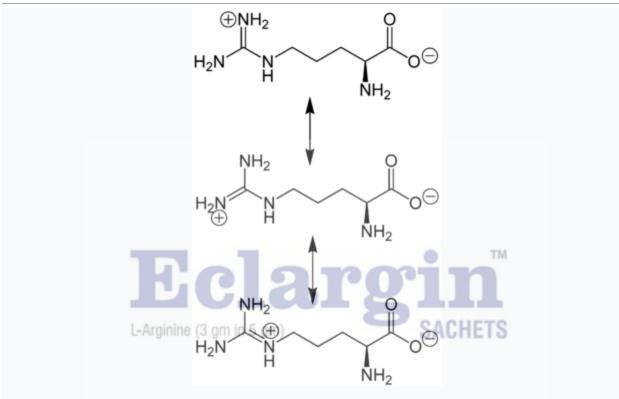
Arginine plays an important role in <u>cell division</u>, <u>wound healing</u>, removing ammonia from the body, <u>immune</u> <u>function</u>,^{Ital} and the release of hormones.^{[4][19][20]} It is a precursor for the synthesis of <u>nitric oxide</u> (NO),^[21] making it important in the regulation of <u>blood pressure</u>.^{[22][23][24]}

Proteins

Arginine's side chain is <u>amphipathic</u>, because at physiological pH it contains a positively charged guanidinium group, which is highly polar, at the end of a hydrophobic <u>aliphatic</u> hydrocarbon chain. Because globular proteins have hydrophobic interiors and hydrophilic surfaces,^[25] arginine is typically found on the outside of the protein, where the hydrophilic head group can interact with the polar environment, for example taking part in <u>hydrogen bonding</u> and <u>salt</u> <u>bridges.^[26]</u> For this reason, it is frequently found at the interface between two proteins.^[27] The aliphatic part of the side chain sometimes remains below the surface of the protein.^[26]

Arginine residues in proteins can be deiminated by PAD enzymes to form citrulline, in a <u>post-translational</u> <u>modification</u> process called <u>citrullination</u>. This is important in fetal development, is part of the normal immune process, as well as the control of gene expression, but is also significant in <u>autoimmune diseases</u>.^{[28]:275} Another posttranslational modification of arginine involves <u>methylation</u> by protein <u>methyltransferases</u>.^{[28]:176}

Precursor


Arginine is the immediate precursor of NO, an important signaling molecule which can act as a <u>second messenger</u>, as well as an intercellular messenger which regulates vasodilation, and also has functions in the immune system's reaction to infection.

Arginine is also a precursor for <u>urea</u>, <u>ornithine</u>, and <u>agmatine</u>; is necessary for the synthesis of <u>creatine</u>; and can also be used for the synthesis of <u>polyamines</u> (mainly through ornithine and to a lesser degree through agmatine, citrulline, and glutamate. The presence of <u>asymmetric dimethylarginine</u> (ADMA), a close relative, inhibits the nitric oxide reaction; therefore, ADMA is considered a marker for <u>vascular disease</u>, just as L-arginine is considered a sign of a healthy <u>endothelium</u>.

Safety

L-arginine is generally recognized as safe (GRAS-status) at intakes of up to 20 grams per day.[29]

Structure

Delocalization of charge in guanidinium group of L-Arginine

The <u>amino acid side-chain</u> of arginine consists of a 3-carbon <u>aliphatic</u> straight chain, the distal end of which is capped by a <u>guanidinium</u> group, which has a <u> DK_a </u> of 12.48, and is therefore always protonated and positively charged at physiological pH. Because of the <u>conjugation</u> between the double bond and the nitrogen <u>lone pairs</u>, the positive charge is delocalized, enabling the formation of multiple <u>hydrogen bonds</u>.

Research

Growth hormone

Intravenously-administered arginine is used in growth hormone stimulation tests^[30] because it stimulates the secretion of <u>growth hormone</u>.^[31] A review of clinical trials concluded that oral arginine increases growth hormone.^[32] However, a more recent trial reported that although oral arginine increased plasma levels of L-arginine it did not cause an increase in growth hormone.^[33]

High blood pressure

A meta-analysis showed that L-arginine reduces blood pressure with pooled estimates of 5.4 mmHg for systolic blood pressure and 2.7 mmHg for diastolic blood pressure.^[24]

Supplementation with L-arginine reduces <u>diastolic blood pressure</u> and lengthens pregnancy for women with <u>gestational hypertension</u>, including women with high blood pressure as part of <u>pre-eclampsia</u>. It did not lower systolic blood pressure or improve <u>weight at birth.</u>^[34]